Resistance in persisting bat populations after white-nose syndrome invasion.

نویسندگان

  • Kate E Langwig
  • Joseph R Hoyt
  • Katy L Parise
  • Winifred F Frick
  • Jeffrey T Foster
  • A Marm Kilpatrick
چکیده

Increases in anthropogenic movement have led to a rise in pathogen introductions and the emergence of infectious diseases in naive host communities worldwide. We combined empirical data and mathematical models to examine changes in disease dynamics in little brown bat (Myotis lucifugus) populations following the introduction of the emerging fungal pathogen Pseudogymnoascus destructans, which causes the disease white-nose syndrome. We found that infection intensity was much lower in persisting populations than in declining populations where the fungus has recently invaded. Fitted models indicate that this is most consistent with a reduction in the growth rate of the pathogen when fungal loads become high. The data are inconsistent with the evolution of tolerance or an overall reduced pathogen growth rate that might be caused by environmental factors. The existence of resistance in some persisting populations of little brown bats offers a glimmer of hope that a precipitously declining species will persist in the face of this deadly pathogen.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invasion Dynamics of White-Nose Syndrome Fungus, Midwestern United States, 2012–2014

White-nose syndrome has devastated bat populations in eastern North America. In Midwestern United States, prevalence increased quickly in the first year of invasion (2012-13) but with low population declines. In the second year (2013-14), environmental contamination led to earlier infection and high population declines. Interventions must be implemented before or soon after fungal invasion to p...

متن کامل

Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome

BACKGROUND Infectious diseases of wildlife are increasing worldwide with implications for conservation and human public health. The microbiota (i.e. microbial community living on or in a host) could influence wildlife disease resistance or tolerance. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans (Pd), has killed millions of hibernating North American bats since 20...

متن کامل

Microbial inhibitors of the fungus Pseudogymnoascus destructans, the causal agent of white-nose syndrome in bats

Pseudogymnoascus destructans, the fungus that causes white-nose syndrome in hibernating bats, has spread across eastern North America over the past decade and decimated bat populations. The saprotrophic growth of P. destructans may help to perpetuate the white-nose syndrome epidemic, and recent model predictions suggest that sufficiently reducing the environmental growth of P. destructans could...

متن کامل

Fungal Disease and the Developing Story of Bat White-nose Syndrome

Two recently emerged cutaneous fungal diseases of wildlife, bat white-nose syndrome (WNS) [1] and amphibian chytridiomycosis [2], have devastated affected populations. Fungal diseases are gaining recognition as significant causes of morbidity and mortality to plants, animals, and humans [3], yet fewer than 10% of fungal species are known [4]. Furthermore, limited antifungal therapeutic drugs ar...

متن کامل

Winter Activity of Coastal Plain Populations of Bat Species Affected by White-Nose Syndrome and Wind Energy Facilities

Across the entire distribution of a species, populations may have variable responses to environmental perturbations. Many bat species experience mortality in large portions of their range during hibernation and along migratory paths to and from wintering grounds, from White-nose syndrome (WNS) and wind energy development, respectively. In some areas, warm temperatures may allow bats to remain a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 372 1712  شماره 

صفحات  -

تاریخ انتشار 2017